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Theoretical results for sandpile models of self-organized criticality with multiple topplings

Maya Paczuski1 and Kevin E. Bassler2

1Department of Mathematics, Huxley Building, Imperial College of Science, Technology, and Medicine,
London SW7 2BZ, United Kingdom

2Department of Physics, University of Houston, Houston, Texas 77204-5506
~Received 23 May 2000!

We study a directed stochastic sandpile model of self-organized criticality, which exhibits multiple top-
plings, putting it in a separate universality class from the exactly solved model of Dhar and Ramaswamy. We
show that in the steady-state all stable states are equally likely. Using this fact, we explicitly derive a discrete
dynamical equation for avalanches on the lattice. By coarse graining we arrive at a continuous Langevin
equation for the propagation of avalanches and calculate all the critical exponents characterizing avalanches.
The avalanche equation is similar to the Edwards-Wilkinson equation, but with a noise amplitude that is a
threshold function of the local avalanche activity, or interface height, leading to a stable absorbing state when
the avalanche dies.

PACS number~s!: 81.05.Rm, 05.65.1b, 87.23.Ge, 87.23.Kg
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I. INTRODUCTION

Sandpile models of stick-slip dynamics have receiv
considerable attention as canonical models of self-organ
criticality ~SOC! @1#. SOC refers to the widespread tenden
of many extended, dissipative dynamical systems to evo
inevitably towards a complex state with power-law corre
tions in space and time: a ‘‘critical’’ state. Of course, a cri
cal state is only one possible example of complex phen
ena that can emerge in large, self-organizing syste
composed of many strongly interacting parts. No doubt th
are other types of complex states that have not yet bee
well characterized mathematically, e.g., for example in n
works@2#. From this viewpoint, the phenomena of SOC its
is a prototype for how complexity emerges in nature witho
fine tuning parameters. In spite of the gross simplicity
various cellular models that have been introduced, and h
dreds if not thousands of numerical studies of SOC, o
minimal analytic understanding has been achieved.

In fact, a survey of analytic works on sandpile models
SOC is exceedingly short. The model of SOC introduced
Bak, Tang, and Weisenfeld~BTW! @3# has yielded to some
analytic treatment associated with its Abelian properties,
marily due to the work of Dhar and collaborators@4#. The
scaling properties of waves, where each site only topple
releases grains once, has been understood by Priezzhe
collaborators@5,6#. Nevertheless, the large scale properties
avalanches, where each site can topple many times in
sponse to a single grain being added to the system, rem
unsolved and the numerical situation controversial@6–9#. In
fact, intermittent, multiple topplings within an avalanche a
pear in most other~unsolved! discrete sandpile models, suc
as the stochastic Manna model@10#, the Oslo rice pile mode
@11#, cellular models of vortex dynamics@12#, etc. The dif-
ficulties preventing progress in solving any of these sim
fied models in particular, or finding general analytic tools
granular systems exhibiting SOC, appear to be related
part, to the existence of multiple topplings.

This statement is further supported by the following fac
Dhar and Ramaswamy~DR! @13# introduced a directed ver
PRE 621063-651X/2000/62~4!/5347~6!/$15.00
d
ed

e
-

-
s

re
so
t-
f
t
f
n-
y

f
y

i-

or
and
f
e-
in

-

-
r
in

:

sion of the BTW model, and solved for the avalanche dis
bution and many other properties exactly. In the DR mod
it can be rigorously proven that no multiple topplings occ
~Consequently, the elegant DR solution, as it has been c
ceived thus far, does not address the full complexity of d
crete or granular models of SOC.! The fixed scale transfor
mation method of Pietronero and collaborators@14# also
explicitly ignores the presence of multiple topplings. O
consequence of this fact is that this method puts the stoc
tic Manna model and the BTW model into the same univ
sality class, which is not consistent with most numeric
works @7,15# ~except Ref.@8#!, including those measuring
unequivocal differences in aging behaviors@16#. Multiple
topplings, by definition, do not appear in any mean-field d
scription @17#, since in high-enough dimensions, the av
lanche activity is not recurrent at any site. Multiple topplin
are a fluctuation effect associated with self-intersections
the avalanche cluster in space and time@18#.

Certainly, the intricacies associated with multiple to
plings are not the only ones that present themselves in
tempting an analytic treatment of granular models of SO
For example, the fact that the dissipation process is confi
to the boundary, which forces the system to self-organize
an important and subtle point because the boundary ca
be scaled out in the limit of large system sizes as is usu
done in statistical physics. In principle, the boundary is
ways important, because the incoming sand grains mus
transported to it, no matter how large the system size.
broken translational invariance associated with the bound
often leads to long-range boundary effects in the metast
states~see, for example,@19,20#!. It might be useful to pry
these complications apart, treating one issue at a time. H
we focus on the problem of recurrent or multiple toppling
and seek a model that does not present other difficulties

Recently, Pastor-Satorras and Vespignani@21# have stud-
ied numerically a stochastic directed sandpile model~SDM!,
which is a stochastic version of the exactly solvable mo
introduced by DR. This stochastic model is simpler and p
sumably unrelated to the directed models introduced
studied by Tadic´ and collaborators@22#. Pastor-Satorras an
5347 ©2000 The American Physical Society
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5348 PRE 62MAYA PACZUSKI AND KEVIN E. BASSLER
Vespignani demonstrated by numerical simulations that
model exhibits multiple topplings, which changes the univ
sality class, making it distinct from the DR model. This w
accomplished by numerically measuring and comparing v
ous critical exponents characterizing the avalanches. Its c
relation to the DR model, which has an exact solution, s
gests to us an analytic study.

A. Summary

We proceed with an analysis of the SDM as follows: Fi
we define the DR model and the SDM. For pedagogical r
sons, in Sec. III, we review the proof that the critical state
the DR model is the set of all stable states with equal pr
ability. We also review some necessary parts of Dhar’s c
struction of an operator algebra for stochastic models. C
bining these two works, we then show that for the SDM t
critical state is also the set of all stable states with eq
probability, described by a product measure. Using this f
we show in Sec. IV that the SDM can be recast as a ge
alized branching process propagating in an uncorrelated
vironment, enabling a study of the infinite system. By ca
fully analyzing the microscopic dynamics of this process
the lattice, we explicitly derive a discrete dynamical equat
for the propagation of flowing grains in avalanches. In S
V, coarse graining this discrete equation gives a continu
equation for avalanches that should describe the large s
properties of any microscopic model with the same symm
try, conservation of grains, and stochastic effects.

Notably, our equation is similar to the Edward
Wilkinson ~EW! equation@23# except that the amplitude o
the nonconservative noise is a Heaviside (u) function of the
local activity. Crucially, the noise amplitude is a thresho
function, rather than being a constant, such as the tempe
ture. The height of the interface represents the number
topplings in an avalanche. The steady state that is eventu
reached in the limit of large times is always the state of
activity where the height of the interface is zero everywh
and the avalanche has died. Thus the equation descri
avalanche dynamics corresponds to an absorbing state p
transition where the the transient state is governed by
EW equation in the region where it survives. Section V a
describes an analysis of this nonlinear equation. We ext
all the ~nontrivial! critical exponents for avalanches, i.e.,
d51, D57/4, t510/7, z52, t t5D57/4, distinct from the
DR model, and ford>2 where multiple topplings are no
relevant,D53/2, t54/3, z52, andt t53/2 as in the DR.
All of these results agree perfectly with previous numeri
works. We also write down the Fokker-Planck equation
the probability distribution of the number of topplings
each site in an avalanche, although we do not solve it.
nally, we conclude with a brief comment on the possibiliti
for future analytical work on granular models of SOC.

II. DEFINITION OF DIRECTED MODELS

Consider a two-dimensional square lattice as shown
Fig. 1. The direction of propagation is labeled byt, with 0
<t,T. The transverse direction is labeled byx, with periodic
boundary conditions. Only sites with (x1t) even are on the
lattice so thatx is a positive integer modulo 2X, and the
lattice has a total ofTX sites. On each site, an integer va
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ablez(x,t) is assigned. Thei th grain is added to a randoml
chosen sitexi on the top rowt50. Therez(xi ,0)→z(xi ,0)
11. When any site acquires a height greater thanzc51 it
topples, i.e.,z(x,t)→z(x,t)22 for z(x,t).zc .

The two models differ with respect to the transmission
grains out of a toppling site. In the DR model, one grain
transferred to the left downstream neighbor and one grai
the right so the toppling rule is forz(x,t).zc :

z~x,t !→z~x,t !22,

z~x21,t11!→z~x21,t11!11,

z~x11,t11!→z~x11,t11!11.

For the SDM, on the other hand, each grain from a toppl
site is given equal probability to go to any downstream ne
est neighbor. In this case, when the site (x,t) topples,

z~x,t !→z~x,t !22

and

z~x21,t11!→z~x21,t11!11,

z~x11,t11!→z~x11,t11!11

with probability 1/2, or

z~x21,t11!→z~x21,t11!12,

z~x11,t11!→z~x11,t11!

with probability 1/4, or

z~x21,t11!→z~x21,t11!,

z~x11,t11!→z~x11,t11!12

with probability 1/4. Thus, the SDM is a directed version
the model introduced by Manna.

In both directed models, grains are conserved during e
toppling event. This is true except at the open boundart
5T where toppling sites simply discharge their grains out
the system. Sites are relaxed according to a parallel up
until there are no more unstable sites, and the propertie
the resulting avalanche are recorded. Then a new avala
is initiated by adding a single grain to a randomly chosen

FIG. 1. Directed sandpile models. Grains from active sites
row t topple onto sites in rowt11. For example, grains from the
site indicated by the open circle topple only onto the neare
neighbor sites indicated by the arrows.
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PRE 62 5349THEORETICAL RESULTS FOR SANDPILE MODELS OF . . .
on the top rowt50. An avalanche can be characterized
its longitudinal extenttc , the largestt row affected, its width
xc , the largest transverse distance from the avalanche o
to any site affected by the avalanche, its areaa, the total
number of sites affected, its sizes, the total number of top-
pling events, and the maximum number of topplings at a
nc .

It is straightforward to generalize this definition to high
dimensions, with the number of directions transverse to
direction of propagation beingd. In this casezc52d21. At
a toppling sitez→z2zc21. In the DR case each down
stream neighbor receives exactly one grain. In the stocha
case, each downstream neighbor has equal probabilityd
to receive each grain. For simplicity of notation and conce
we will focus our discussion on the cased51 unless other-
wise noted.

III. STATES ON THE ATTRACTOR

For both directed models, any configuration satisfying
<z(x,t)<zc for all (x,t) is stable. The total number of suc
configurations iszc

TX . For clarity, we now review the argu
ment showing that in the steady state, all such stable st
are equally likely in the DR model.

A. Review of some exact results by Dhar and Ramaswamy

Let C0 be a starting configuration with thei th particle
added at sitexi , resulting in the new stable configurationCi .
Then Ci is uniquely determined by the dynamics givenxi
and Ci 21. The crucial point is that this dynamics is inver
ible. On the top rowCi differs fromCi 21 only at the sitexi ,
with z(xi ,0) in Ci being more than its value inCi 21 by one
~mod2!. Other rows inCi 21 are the same as inCi if there
was no toppling at (xi ,0); otherwise thez’s in the first row
t51, in Ci 21 are the same as inCi , except at the two down
stream neighbors (xi21,1) and (xi11,1) of (xi ,0) whose
heights are less by one~mod2! than their values inCi . This
obviously continues for subsequent rows. Thus givenCi and
xi we can uniquely determineCi 21.

For a givenCi , there are preciselyX distinct choices of
Ci 21 andCi 11, corresponding toX distinct possible choices
of xi and xi 11. The master equation for the evolution
probabilities of configurations, is

dP~C!/dt52(
C8

TC8CP~C!1(
C8

TCC8P~C8!. ~1!

Since there areX distinct choices for theC8 into C and also
for the C8 out of C, each having probability 1/X, the prob-
ability distribution P(C05a)5const, independent ofa, is
invariant in time. Thus the probability distribution of stat
on the attractor is a product measure, with each site inde
dently occupied with one particle with probability 1/2, ot
erwise being empty.

In a recent work, Dhar@24# has shown that the stochast
Manna model also exhibits the Abelian property and is
special case of the Abelian distributed processors mo
Correspondingly some of the the analytic techniques of
BTW model also apply to the stochastic Manna model. I
only necessary to realize that for the stochastic models
in
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stead of associating probabilities with each toppling, we c
assign to each site an infinite stack of random numbers,
formly distributed between zero and one, say. The quenc
random numbers in each site’s stack then determine the
location of grains during each toppling event. Thus, thej th
random number at (x,t) determines at thej th toppling of that
site where the grains will go. There is a one-to-one cor
spondence between any realization of the dynamics of
stochastic model, and the dynamics of a deterministic sys
with a random array~chosen appropriately to model th
probability distribution of grain allocation!, under the same
condition of particle additions.

If we specify the height configuration of the sandpile
well as the infinite stack of random numbers at each s
Dhar shows that the model is also Abelian. It is easy to ch
that given any unstable configuration with two or more u
stable sites, we get the same configuration by toppling a
unstable sitei, and then at unstable sitei 8, as we would get if
we first toppled ati 8 and then ati, if the same list of random
numbers in the array is provided. Iterating this until a me
stable state is reached proves the Abelian property of
model.

B. New results

The directed stochastic model is also equivalent to a
terministic directed model with an infinite stack of quench
random numbers at each site. Since the latter model is A
lian we can choose to relax each row, one site at a time, u
it is completely stable, before going on to the next high
row. In this case, it is easy to see that the model shares
same property of invertibility as the DR model.

Let C0 be the starting configuration andR(x,t, j ) be the
infinite array of random numbers, with the initial pointe
j 0(x,t)50 for all entries (x,t). The i th particle being added
at sitexi , and the current pointersj i 21(x,t) in the arrayR
known, this results in a new stable configurationCi , and a
new set of pointersj i(x,t) in the fixed arrayR. Invertibility
follows. In this case we are given the current configurat
Ci and the current set of pointersj i(x,t) in the fixed arrayR
and xi . In order to prove invertibility we must determin
both Ci 21 and j i 21(x,t).

On the top rowCi 21 differs from Ci only at the sitexi ,
with z(xi ,0) in Ci 21 being less than its value inCi by
1~mod2!. If z(xi ,0)51 in Ci , then no toppling occurred an
Ci 21 is the same asCi at all other sites; also the set o
pointers$ j i 215 j i%. If z(xi ,0)50 then one toppling occurred
at that site. We locate the pointerj i(xi ,0) and move it back
one step in the stackR(xi ,0) giving j i 21(xi ,0)5 j i(xi ,0)21.
This pointer now points to a number that tells us where
two grains were placed. The heights at the sites in the sec
row t51 in configurationCi 21 are the same as those inCi
except at the forward neighbors fromxi that received a grain
according toR@xi ,0,j i 21(xi ,0)#. If both sites received a grain
then we apply the same procedure to those sites as we
plied to (xi ,0). If one site receives two grains then that s
must have toppled once. Its height in the previous confi
ration is the same as its height in the current one, and
pointer is moved back by one unit, determining which dow
stream neighbors receive grains. One continues in this fa
ion increasing the rowt.
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Unlike the DR model, eventually one can encounter a
receiving three or more grains from sites in the previous ro
If the total number of grains received at a siten is even, then
the site must topple exactlyn/2 times. The pointer at that sit
is moved backn/2 steps, soj i 21(x,t)5 j i(x,t)2n/2, reading
the intervening numbers in the stack at that site to determ
where the grains from that site are sent. Ifn is odd and inCi

the height is one, then the site must have toppled (n21)/2
times, with its height inCi 21 being 0. Thus j i 21(x,t)
5 j i(x,t)2(n21)/2. Similarly if n is odd and inCi the
height is zero, then the site must have toppled (n11)/2
times, with its height inCi 21 being 1. Thus j i 21(x,t)
5 j i(x,t)2(n11)/2. One reads the intervening sequence
the array of random numbers for that site to determine h
many grains each downstream neighbor receives, and
forth. Thus, givenCi , xi , and j i(x,t), with a fixed array
R(x,t, j ), we can uniquely determineCi 21 and j i 21(x,t).
This proves the invertibility of the dynamics of the SDM.

For a given arrayR and set of pointers$ j i%, for any state
Ci there are preciselyX distinct choices ofCi 21 and Ci 11
corresponding to theX possible choices ofxi and xi 11. It
then follows, as before, from the master equation for
evolution of probabilities of configurations, that the state p
pared with a uniform distribution over all stable states
invariant in time.

Thus for the directed Manna model, the self-organiz
critical state is the set of all stable states with equal like
hood; it is a product measure state, where the probability
a site to be empty is equal to the probability for it to ha
one grain, which are both equal to 1/2. This is exactly
same as in the DR model, so for the SDM the presence
multiple topplings does not lead to any correlations in
states on the attractor.

IV. DISCRETE EQUATION FOR AVALANCHES IN THE
CRITICAL STATE

The fact that the critical state is a product measure s
leads to a significant simplification; namely, the critical d
namics can be described as a type of generalized branc
process. Thus one can simulate or describe avalanches
infinite system as follows. Consider a site that we we w
call the origin. The origin in the equivalent branching pr
cess represents the site that receives a grain in the cr
state of the SDM. The height at that site is either one or z
with equal probability. Add one grain to it. If the height no
is greater than one it topples. Then define the heights at
(1,1) and (21,1); they are one or zero with equal probab
ity. They receive grains from the origin according to t
stochastic rules of toppling in the directed model, and top
if they are unstable. In this way, a lattice is built as needed
the avalanche propagates and one can simulate the in
system, albeit always for a finite time.

We define the quantityn(x,t) to be the number of grain
added to (x,t) given that one grain was added to the orig
The total number of grains that leave a sitenout(x,t) can at
most differ by one from the number of grains going in.
n(x,t) is even thennout(x,t)5n(x,t). If n(x,t) is odd, then,
since the number of grains that can leave any site is alw
even nout(x,t)5n(x,t)61. The process is critical and th
increase or decrease occur with equal probability.Thus we
e
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observe there is a source of nonconservative noise in
dynamics of n during an avalanche that comes from the p
ence or absence of grains in the metastable states.Since the
number of grains going into a site can only arise as a con
quence of grains going into its immediate upstream nei
bors, we arrive at the following discrete equation

n~x,t11!5 1
2 @n~x21,t !1n~x11,t !#

1uo@n~x11,t !#h~x11,t !1uo@n~x21,t !#

3h~x21,t !2 j ~x11,t !1 j ~x21,t !. ~2!

On average each site will get 1/2 of the grains going into
upstream neighbors. There are two sources of stocha
variations from the average. One is conservative: Each
stream neighbor may divide its out flowing grains uneve
between its two downstream sites, but what is taken aw
from one downstream neighbor is added to the other acc
ing to the binomial distribution. This gives a stochastic cu
rent j, which is either directed to the right~here defined as
positive! or to the left~here defined as negative! for each site.
The first two moments of the stochastic current of flowi
grains are, from the binomial distribution,

^ j ~x,t !&50,

^ j ~x,t ! j ~x8,t8!&5
n~x,t !

4
“

2do~x,x8!do~ t,t8!. ~3!

Since this is a discrete equation, here“

2 refers to the dis-
crete Laplacian operator, and the Kronecker delta functi
do , are defined on the set of integers.

The nonconservative noise is the most interesting and
we shall see, relevant noise. It is associated with the fact
the metastable states either add or absorb flowing gr
from the avalanche. However, as mentioned before, the n
ber of flowing grains can only change by one unit irresp
tive of the local number of flowing grains as long as it
nonzero. This gives rise to the discrete Heaviside step fu
tions in Eq.~2! defined asuo(u)51 for u51,2,3, . . . and
u(u)50 otherwise. With this convention, the nonconserv
tive noise is at each point in space time either61 with equal
probability or 0. Thus

^h~x,t !&50,

^h~x,t !h~x8,t8!&5 1
2 do~x,x8!do~ t,t8!. ~4!

The appropriate initial condition to describe the avalanche
n(x,t)5do(x,0). The avalanche propagates and spreads
eventually it dies out. Then a new avalanche, represente
a new realization of the branching process, is started.

V. CONTINUUM EQUATION FOR THE AVALANCHES

One could consider a rigorous derivation of the co
tinuum limit of Eqs.~2!–~4!, taking the lattice size in spac
Dx , and timeD t , as well as the grain sizeDn , to zero.
Instead, here we invoke the usual ‘‘hand-waving,’’ coar
graining procedure to obtain a smooth functionn of continu-
ous variablesx and t. Expanding to leading order in grad
ents, and time derivatives, we arrive at
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]n~x,t !

]t
5

1

2
“

2n~x,t !12 j ~x,t !12u@n~x,t !#h~x,t !,

~5!

where the threshold functionu(u)50 for u<0 and u(u)
51 for u.0. By the central limit theorem, the noise term
are both Gaussian with first and second moments

^h~x,t !&50,

^h~x,t !h~x8,t8!&5 1
2 d~x2x8!d~ t2t8!,

^ j ~x,t !&50,

^ j ~x,t ! j ~x8,t8!&5
n~x,t !

4
“

2d~x2x8!d~ t2t8!. ~6!

The appropriate initial condition for the avalanche
n(x,0)5d(x). The avalanche grows by increasing or d
creasingn locally, wheren is nonzero. Eventually the ava
lanche dies andn(x,t)50 everywhere. This equation de
scribes the transient out of an absorbing state associated
the avalanche. In particular, the state with no flowing gra
n(x,t)50 for all (x,t) is stable, which is a requirement o
any equation describing avalanche dynamics.

A. Analysis

Dimensional analysis is the simplest tool we can app
and the first step in any theoretical analysis. The dimens
of the conservative noise is@ j #25(@n#/@ t#@x#3), and dimen-
sion of the nonconservative noise is@h#25(1/@x#@ t#). Thus,
as long as@n#,@x#2, then the conservative noise is irre
evant with respect to the nonconservative noise. Ignoring
term we arrive at

]n~x,t !

]t
5

1

2
“

2n~x,t !12u†n~x,t !‡h~x,t !. ~7!

In the region covered by the avalanchen(x,t).0 and the
threshold functionu, may be ignored, resulting in an ava
lanche dynamics described by the linear Edwards-Wilkin
equation@23#. Dimensional analysis then gives the corre
scaling of various quantities. Thus for the SDM,xc;tc

1/z

with z52 precisely as in the DR model. However, th
Edwards-Wilkinson equation gives a rough surface in o
dimension and the maximum number of topplings scales
the transverse extent of the avalanche asn;xc

1/2. This differs
markedly from the DR model wheren51, independent of
the transverse extentxc .

Continuing with our scaling analysis, the area covered
the avalanche isa;xctc;tc

3/2 ~as in the DR model!, but the
size of the avalanche includes the extra effect of multi
topplings. The size scales ass;nxctc;tc

7/4. Since on aver-
age, for every grain added one grain must be transported
entire length of the system to the open boundary, we h
that ^s&5T. Since all the geometric quantities associa
with avalanches exhibit scaling, it is reasonable to assu
and can perhaps be proven, that the distribution of avalan
sizes, times, and spatial extent are power laws, nam
P(s,T);s2t f (s/TD), Pt(t,T);t2t tg(t/T), and Px(x,T)
-

ith
s

,
n

is

n
t

e
s

y

e

he
e

d
e,
he
ly,

;x2txw(x/T1/z). The constraint on the average size then giv
15D(22t) or t510/7. Similarly, from conservation o
probability, t t215D(t21)5(tx21)/z, givest t5D57/4
andtx55/2.

It is straightforward to check that Eqs.~2!–~4! also apply
to the case where there ared transverse dimensions. The on
factors that are changed are various constants. Applying
mensional analysis, we find that ind transverse dimension
xc;tc

1/2, and n;x22d/2, a;t3/2, and s;t22(d/4) giving t t

5D522(d/4) andt5221/22(d/4) for d<2. The upper
critical dimension isdc52, above which the maximum num
ber of topplings does not diverge with the size of the a
lanche, and the mean-field results obtain withD53/2, z
52, t54/3, andt t53/2. This corresponds to the fact th
the surface described by the EW equation is flat above
dimensions rather than being rough.

1. The threshold term

Outside the region covered by the avalanche, the thre
hold functionu has a major effect on the dynamics. In pa
ticular, in regions wheren(x,t)50, the interface is pinned
and cannot move. The noise does not act where there ar
flowing grains! This is completely different than the usu
models of stochastic interfacial growth. The threshhold fu
tion importantly breaks the translational symmetry of t
EW equation (n→n1const) and leads to an absorbing sta
Typically absorbing state phase transitions have been con
ered where the amplitude of the noise depends on the act
n to some positive power@25#. Here we find a very weak
effect simply distinguishing between having activity and n
having it in terms of a threshold function. This effect is
weak that the scaling dimensions of the propagating a
lanche are the same as the linear EW equation. Obvious
the threshhold functionu(n) were replaced byna in Eq. ~5!
that would no longer be the case. Thus Eqs.~5! and ~6! is a
hybrid combining interface dynamics~the number of top-
plings of the avalanche being the interface! and an absorbing
state model.

2. Averaging over noise

Averaging over avalanches corresponds to averaging
~7! over noise and we arrive at a linear diffusion equation
the average propagation of flowing grains in response t
single grain being added at (0,0) to the critical system:

]^n~x,t !&
]t

5
1

2
“

2^n~x,t !&, ~8!

whose solution is

^n~x,t !&5
1

~pt !1/2
e2x2/2t. ~9!

Obviously, this solution has the important property of co
servation, namely,*dx^n(x,t)&51, which is required for
stationarity. Note that the DR model also obeys exactly
same equation for the average propagation of activity. T
equation is enforced by the local conservation and symm
properties of the system and is in no way related to the p
ence or absence of multiple topplings.
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3. The Fokker-Planck equation

Ideally one would like to determine the full probabilit
distribution for the number of topplingsn(x,t) in ava-
lanches. The dynamics of this probability distributionP@n;t#
is expressed by the Fokker-Planck equation. The Fok
Planck equation can be obtained by straightforward me
from the Langevin equation@Eqs.~6! and ~7!#. It is

]P@n;t#

]t
52

1

2E dx
d

dn
$~“2n!P%

1E dx
d

dn H u~n!H d

dn
@u~n!P#J J . ~10!

Unfortunately we are not currently able to analyze this eq
tion in any significant way.

VI. OUTLOOK FOR FUTURE WORK

A major limitation of the present paper is that it appli
only to a set of directed models where all stable states
f

v

,

hy
r-
ns

-

re

equally likely. Even in this simplified setting, the occurren
of multiple topplings has a profound affect on the critic
properties of the system, changing the universality cla
This fact suggests that any reasonable theory of avalan
dynamics in sandpile models of SOC must treat the effec
multiple topplings.

Avalanches are described by the dynamics of partic
that exhibit an absorbing state phase transition. This pic
of avalanches as reaction-diffusion systems with an abs
ing state was first suggested in Ref.@26# as applicable to
SOC systems and later in Ref.@27#. In the case discusse
here, the particles, representing topplings, are known
propagate in an uncorrelated environment because the p
ability distribution of metastable states on the attractor
described by a product measure. In the general case, t
will be important correlations from the background that mu
be included along with boundary effects, leading amo
other things, to correlations between avalanches. It seem
us that Dhar’s construction of an operator algebra for s
chastic models might provide a fruitful avenue to purs
further research.
ett.
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